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A lattice random walk theory has been successfully used to interpret and analyze a variety of experimental
data related to applications in optical imaging. A major advantage of the lattice theory is that it replaces
cumbersome eigenfunction expansions resulting from diffusion theory by simpler relations expressed in terms
of generating functions. The transillumination experiment has previously been analyzed by representing a
region of increased absorptive properties in tissue by a single anomalous point. Here we extend the analysis to
allow for k anomalous sites, thus providing a tool for studying the effects of nonlocality of the anomalous
region. We show that if the absorption coefficient in the anomalous region is sufficiently small, the simple
approximation based on the use of a single point with an anomalous absorption coefficient yields quite good
results as compared to data obtained from phantoms. It is shown that the neglect of correlation effects leads to
an underestimate of the absorption coefficient in an anomalous ré§b063-651X97)12109-2

PACS numbds): 87.10+€, 05.40+j

[. INTRODUCTION in choosing the time-gating period it is necessary to model
the kinetics of photon migration in a turbid medium. Many

Many research groups are presently exploring the possiblanalytical and numerical approaches have been used in an
use of optical methods as a tool for clinical imaging, and aattempt to solve this problem to balance the accuracy of a
vast literature on this subject has been produced, cf., fofigorous physical model with the convenience of a more ap-
exampld 1,2]. Optical techniques are attractive as a biomedi-Proximate one requiring a simpler mathematical formalism
cal tool because they do not involve the use of ionizing rafor its exploitation. From the physical viewpoint the most
diation. Optical imaging techniques depend on there being gccurate_class of models for this purpose are those bas_ed on
difference between optical properties of an embedded abnof€ selution of a full transport equation, but such equations
mal body and those of the tissue surrounding it. These difé'® only solvable numerically for realistic problems. AISO.’
ferences may be in the absorption or scattering coeﬁicient@,e'ther the form nor the parameters that define the scattering
or both. At the same time a major drawback to successfully
implementing optical methods is the lesser degree of resolu
tion obtainable as compared to that associated with x-ray
imaging techniques. This is attributable to multiple scattering Photon
of the photons by tissue inhomogeneities, which produces In
image blurring. This negative effect can be partially over-
come in transmission imaging by using time-gated transillu-
mination experimentgcf. Fig. 1). In the implementation of
transillumination measurements the role of time gating is to
select photons that arrive at the detector at the earliest pos
sible times. This selection is equivalent to utilizing those
photons whose paths are most localized spatially in travers
ing the tissue, and which not have had time to diffuse by an
appreciable amount.

The design of imaging instrumentation based on time gat-
ing requires choosing the time-gating period. Too short a
period results in the image being dominated by noise. In
addition, the fact that the photon intensity is necessarily quite
low at very short times is a negative factor to be considered
in clinical applications of such technology. On the other |G, 1. Schematic diagram of the transillumination experiment.
hand, too long a gating time, although providing an ad-in our analysis of the coaxial experiment the source and detector are
equately detectable number of photons, degrades both cotaken to be collinear with the center of the anomalous region. If the
trast and resolution due to wandering due to diffusion. Indetector is moved relative to the source the numerical results would
order to examine questions related to the tradeoffs involvede qualitatively similar.

Photon
Out
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kernel are known to any degree of precision. Because odlized to allow for absorption on nonanomalous sites.
these difficulties the analysis of photon migration in a turbid

medium is often based on the use of considerably simplified

phenomenological models whose utility is measured by how Il. ANALYSIS

well they produce results in accord with experiments.

An obvious candidate for a simplified model of photon
motion is the standard diffusion process, which has indeed The slab of tissue shown in Fig. 1 is modeled as a simple
been used successfully by many investigatf8s.5]. Diffu- cubic lattice bounded by two parallel planes. The coordinates
sion models, however, have the negative feature that solvingf an arbitrary point on the lattice will be denoted by
a problem with an inclusion and with boundaries requires the= (x,y,2), the components of which are integers that satisfy
solution of a generally quite complicated boundary-value—*<X,y<% and Osz<Z. Our use of integer units is con-
problem, as exemplified by analysis in the paper by deryenient for the following analysis; later we indicate how to
Outer, Niewenhuizen, and Lagend[j&]. An alternative to a  convert the results to physical units. The set of anomalous
diffusion-theory-based model is one based on the discretd?oints will be denoted b= (s,,s,,...,S). The two parallel
time lattice random walk7,8]. Random walk models have interfaces that define the slab=0 andz=Z, will be as-
successfully been used to reconstruct images from experfumed to consist only of absorbing points so that a photon
mental data obtained from measurements using phantoniBat reaches one or the other of the two faces is instantly
[9]. Further, the central-limit theorem guarantees that manybsorbed there. The initial position of an injected photon will
results derived from the theory of random walks will agree,be denoted by,=(0,0,1) so that the lattice spacing is of the
after proper scaling, with those derived from diffusion theoryorder of a scattering length. Photon motion will be modeled
[10]. in terms of an isotropic random walk on a simple cubic lat-

Relevant to the present discussion is that a formalisniice. The random walk will be allowed to take steps to near-
based on the lattice random walk model can simplify prob-est neighboring sites only, so that the probability that a pho-
lems that involve inclusions because the boundary valu&on moves to a particular neighboring site in a single step is
problems for the diffusion equation are replaced by problemgqual toz. We seek to determine the number and distribu-
that require dealing only with discrete quantities. A furthertion of photons that reach=Z at stepn in the presence of
advantage of this formulation accrues from the fact thathe setS.
many random walk problems are solvable in terms of gener- The probability that a photon, on hitting a site belonging
ating functions. Such solutions are applicable, without fur-to S, is absorbed at that site will be denoted ho thatzn
ther approximation, to interpret results obtained using=1 corresponds to a completely absorbing site. To simplify
frequency-domain spectroscopy. our analysis we will assume that the absorption probability

An example in which the random walk formalism has of any site not inS is equal to zero. This is realistic since
been used appeared recently in a study of absorptivity corwhen NIR radiation is used the values stend to be rather
trast in transillumination imaging of tissue inclusiofil]. small (typical values are between 0.01 and 0[Q8]). This
This investigation, as well as more recent ones on reflectiofeature will be exploited to develop a perturbation expansion
experiments as used in fluorescence spectros¢dpyld,  of the exact solution. Other alternatives require rather cum-
approximated the anomalous region by a single lattice pointbersome calculations.

In an earlier application based on random walk methodology A complete description of photon motion is contained in
we used an ad hoc approximation that omitted all correlatwo sets of probabilities{p,(r|ro)} and {qg,(r|ro)}. The
tions, by which we mean the possibility of photons hoppingfunction p,(r|r,) is the probability that a photon on a lattice
between different anomalous sites. This artifice allowed us tslab with absorbing boundaries moves from the igjt® r in

take into account differently shaped sets of anomalous points steps when there are no anomalous sites. The function
without unduly complicating the necessary numerical com-q,(r|r) is the probability that the photon moves framto
putations[9]. The analysis to follow is aimed at an approxi- r in n steps, taking both the absorbing interfaces and the
mate assessment of the penalty incurred by neglecting thesmomalous sites into account. This latter set of probabilities
correlations. is the one required to describe the physics inherent in our

In this paper we deal with a case in which the anomalousparticular problem, but they,(r|ro) can be expressed in
points have absorption coefficients that differ from those ofterms of thep,(r|ry), for which exact expressions are avail-
the master lattice whose properties model the normal tissuable[10].

When NIR radiation is used for imaging purposes experi- In the lattice random walk model the flux of photons into
mental values of the absorption coefficient with an anomaa siter =(x,y,Z) at thenth step of the random walk is

lous site tends to be very small when expressed in dimen-

sionless units. This circumstance allows us to exploit a Jn(r)=0dn-1(x,y,2—-1[0,0,1)/6 2.9
perturbation expansion of the exact generating function that

facilitates examining the difference between the propagator

in the presence and absence of the set of anomalous sites.dimce, in order to reach at stepn the photon must reach
particular, this study is aimed at assessing correlation effectx,y,Z—1) at stepn— 1, thenth step taking it fromz—1 to
and at incorporating these effects, at least approximately with probability 1/6. Hence we see that the flux is directly
into the analysis. We will assume that the absorptivity ofrelated to the state probabilitg,(r|ro). The two sets of
points outside of the anomalous set is negligible, and willprobabilities are not easily related to one another, but their
accordingly be set equal to zero. The theory is easily genegenerating functions are.

A. General formalism
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The generating function of an arbitrary sequefg,g will order for the photon to reaahat stepn it is necessary that
be denoted bﬁg, which is no visit to S should have resulted in the photon being ab-
sorbed there. This requirement is expressible in terms of
> —né 99 [(r|rg;a,B) as defined in Eq(2.3) by settinga;=1— 17,
9e= & Gn€ (2.2 i(#j)=1,2, ... k. To complete the transition from the gen-
erating function in Eq.(2.3 to an equivalent one for the
A relation betweerfj«(r|ro) andps(r|ro) can be established gn(r|ro) one sets3=exp(—é).
following the analysis if16]. That paper contains a calcu-  To simplify notation we abbreviate the generating func-
lation of then-step propagator for a random walk conditional tions for transitions between sites $1with no anomalous
on the number of visits to sites in a ®ta function that will ~ sites as
be denoted byp,(r|rq;l). More precisely, these are the
n-step propagators conditional on makihguvisits to s;,l» bgvijzf)f(slg). (2.9
visits tos,, and so forth. These probabilities cannot be found
directly. However, it is possible to find an explicit expressionThe desired relation has been shown to be expressible as

for the related generating function
k

Dj({7m) .

. - - rr r;s), reS
a3 815 3 purlroaialial, - | PAIOIT 72 By perls)
n=0' 1520 I=0 qe(rlro)= D.(£.7)
(2.3) l_ J ! , r S
=By '
where thea; and g8 are variables that define the generating (2.5

function. To translate this form of the generating function
into the form required in the present paper one notes that im [15]. In this equatiorD (¢, 7) is thek Xk determinant

1+ 9(Pg11—1) MPe12 70 1k
P 1+ 9(Peop—1) - P
D(&,7)= fpsg,zl 7( psg,zz ) 77p§§,2k 2.6
7Ps 1 7Ps k2 o 1+ p(Pek—1)

andD;(¢,7) is found fromD(¢&,7) by replacing columry inverses in closed form. However, taking advantage of the
by a vector whoséth component iP(s]rq). In the case of fact that is small for applications involving NIR radiation,
a single anomalous site atEq. (2.5 reduces to we can expand botb;(&,7) andD(&,7) in a perturbation
~ ~ series, from which one can obtain approximations toAf{e
. . Pr|s)p(slro) that appear in Eq(2.9).
Ae(r|ro) =Pe(rlro)=» T3 P9 —1]" @7 Before discussing some of the implications of the pertur-
bation expansion we introduce what will be referred to as the
which is the result used ifil1] and which can be derived additive-sites model, which neglects all correlation effects,
without resorting to the more general analysig 15]. and uses the further approximation that all of the diagonal
The contrast function at stapmeasured at a point on the terms inD(§&,#n) are equal. This last assumption is quite

boundaryr = (x,y,Z) will be denoted byC,(p|r,), wherep  accurate provided that the anomalous sites are not located

is the two-dimensional vectox(y). It is defined as within one or two lattice spacmgs from either of the bound-
aries. Accordingly we sef;11=Ps2="""=Pskk=Pesd-
C.(plro)=1- dn(plro) 2.8 Both D(,7) andD;(£,7) can be found in closed form for
n(Plfo)= Pn(plro) ' the additive-sites model:
and is a measure of the change in the flux induced by the D(&n=[1+ ﬂ(f’g,d_l)]kv
presence of a set of absorbing sites. On returning tdE§). N . o1
we see that the contrast function can be expressed in the Dj(&,n=pes|ro[1+ n(Pea— DI (2.10
general form But this means that
=S A (5P (1) D. 5 (slr
Cn(plro): 77 J n ] , (29) ](é:l 77) _ pf( || 0) (211)

Pn(plro) D(&7) 1+ 9(Peg—1)

in which the functions&ﬁrj,)(p,sj) are found as the inverse of In the additive-sites model the relation between the generat-
the generating function®;(¢,7)/D(¢,7) regarded as a ing function for the propagator allowing for anomalous sites
function of & It is not generally possible to calculate theseand the propagator for the homogeneous lattice is
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W(r|ro;S) W,(r|ro;S)

Ae(r|ro)=pe(rire) —n 1 (212 Qn(r|ro)~Pn(r|ro)—Um- (2.18

+7(Pea—1)°
Here we have written Our second observation is that correlations between dif-
k ferent sites inS appear only in the termfafyij in which i
Wg(f|ro;5):,2 Pe(r|s)Pe(sro), (2.13  #j. Aglance at Eqs(2_.13 and(2.16 indicates that these
i=1 terms do not appear in the terms proportionalstan the
numerator and denominator terms but do appear in the coef-
ficients of 2. Provided that suitable expressions for fie
kK n can be found, Eq2.12) can be used without further approxi-
W, (r|ro;S) = E E pi(r]S)P_i(S]ro).  (2.14 matpn to stl,de frequen<_:y-doma|n spectrogcopy by replacing
j=11=0 Ebyiw/(cuy), wherew is the frequencyg is the speed of

L _light in the slab, ang., is the transport-corrected scattering
Thus, the approximation in Eq2.12 neglects events in ¢o0r The form of the relation in Eq2.18 furnishes a

Wh'CE a phor;con hop_sdfromf or?e of the anomalous sﬂEs Qjmple and readily implementable approximation to
another. In the remainder of the paper we use a perturbatiq n(r|ro). It can be shown to be accurate whenever the prod-

expansion O.f the result in E42.5) to explore some conse- uctk# is small. This can sometimes be a realistic assumption
quences of including such events. for quite large clusters of anomalous sites. Recently pub-
lished data on optical properties of both healthy and cancer-
B. The perturbation expansion ous breast tissue in the near infrared indicates that the values

Here we consider the detailed form of the expansions off 7 may be as low as 0.0414,16|, but more commonly are
D(&,7) andD (¢, 7) aroundzn=0. The first two terms in the Of the order of 0.01-0.0P18].
expansion oD (¢, ) are

K C. Approximations to the generating functions
D(§,n)~1+ 7721 [(Peji—1)] 1. The additive-sites model
i=

To draw further conclusions from the analysis we must

the time-domain equivalent of this relation being

7 « A N specify usable approximations to the propagators that appear
+ 2 i(#jz)ﬂ = {(Peii =D (Pgj;— 1) in Egs. (2.5 and (2.6). For this purpose we note that trans-
lation of typical tissue slab widths into the integer units used
—PeijPejit o (2.19 in the random walk analysis suggest that these widths are

typically of the order of 20—40 lattice spacings. Although it
Since properties of the random walk are assumed to be isgs possible to provide exact expressions for the propagators
tropic the correlation terms are symmetric in the sense thagf the nearest-neighbor random walk used Hgrg, it is
P¢,ij=Pg,ji - Similarly, the lowest order terms in the expan- nevertheless convenient to work in terms of the Gaussian
sion of Dj(¢&, ) are approximation, which is equivalent to takimgto be large.
This is justified by the observation that in discrete units,
must be at least as great as the slab width. To somewhat
simplify the form of the resulting expressions we will distin-
‘ guish between the variation between they) coordinates
. . and thez coordinate by defining the two-dimensional vector
_i(ﬂz):l p§(3|r0)p§,ij] - (218 p=(x,y), allowing us to express the vectorasr = (p,z).
The Gaussian approximation to the propagator in free
Two observations should be made at this point. First, weSPace IS
observe that if the expansion &f(¢, ) is truncated at the
first order in » and only the leading term iD;(§,7) is 3 \23 3
retained, the approximation to E¢R.5) for r & S will have pn,FSU“OW(ﬁ) ex;{ ~ o {(P—Po)2+(Z—Zo)2}},
the same functional form as EQR.7) except that the term (219
[ﬁg(s|s)—1] in that equation is replaced here by the sum

S 1(Pejj—1). As mentioned earlier, we can s j;
~b§,d so that the sum reduces to

K
Dj(&m)~ps(s|ro) + 77{ ﬁg(S”rO)i(;%::l [Pgii—1]

wherep, is the point in the X,y) plane associated with,.
The posited physical picture requires that the boundaries at

k z=0 and z=Z should consist only of absorbing points,
> (Pejj— 1) ~K(Peg—1). (2.17  Which is equivalent to requiring that the boundary conditions
j=1 " ’

Later we show that in the large-limit, equivalent to the Pa(p0lro)=pn(p.Z[ro)=0 (2.20

limit §é—0, the terrrf)gyd approaches a constaph 4. Hence,
in the largen limit the additive-sites approximation is be satisfied. The propagator that takes into account absorbing
equivalent to boundaries is
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3 o 3 o
pn(r|r0)~5r.r05n,0+ ex —ﬁ(z—zo+212) —ex —%(z+zo+212) .

3 3/2 3 *
ﬁ) exp{ ~ 5 (P Po)ZL_Ew
(2.21

An additional factor ofs,.; 6,0, corresponding to the initial condition, is included, since the calculatign gfrequires that

the behavior ah=0 should be correctly accounted for.
We will calculate an approximate but convenient form for the generating funﬁg’@hro) by replacing the sum over by
an integral so that, for example,

o0

. * 3 - . - .
pg(r|ro)*fo e pp(r|ro)dn= Oyt e jzm [Gg(\/(P_P0)2+(Z_Zo+ 2jZ)%)— G4 V(p—po)?+(z+20+2j2)%)],
(2.22

whereég(a) is the function whereC,(p;1) is calculated as if there were a single anoma-
lous site ats. Thus, in the additive-site approximation
R e—aVez Cn(p;K) is, to a first approximation, proportional to the num-
(2.23 ber of anomalous sites.

2. Correlation effects
Notice that the approximation in E¢2.22 cannot be used

whenr=r, since the term withj=0 will be infinite. Hence . ;
0 f terms proportional tay?, must be made in both the numera-

the evaluation of the self-termg;;; =p(s|s) requires a : : : i
slight modification of the preceding analysis, which consiststOr and denominator of Eq2.5). Consider first the specifics

of accounting exactly for the=0 term and setting the lower g‘;tsr:;c%rgictt;g: ?hpepte;rrlr?sg i': ttrTg g:gsmm;‘g:'a’gigﬁ? tehne d
limit on the integral in Eq(2.22 atn=1. Letz be the value P b

of zin s . We assume that andZ are much greater than 1 on specific sites and can therefore be regarded as constants.

and thatZ>z;, which means that an anomalous site is notHisgﬁeinWEe r?za I;ez' uvsv?\igrfl ﬂifl dssmallapproxmanon ©OPij
too close to either of the boundaries. A consequence of thid q-{e.29, y

Corrections for correlation effects, i.e., inclusion of the

assumption is that the generating functﬁ)gii is nearly in- 3 1
dependent of. This assertion is based on retaining only the ﬁou* — [
lowest order terms of the series in the expansion given in Eq. U275 \/(Pi —Pj)2+(zi —z+ 212)?
(2.22:
1 .
_ - . #].
3 e & \/(Pi—Pj)2+(Zi+Zj+2|Z)2}

3/2
— —z dn
277) 1 n32

Peii~1+
(2.26

We calculate a few values q?)‘o,ij for Z=41 to give some
idea of how these terms compare to the diagonal terms,
which are all approximately equal to 0.66 provided that none
The dominant terms in this expression are the first two term&f the sites is within one or two lattice units from an absorb-
on the right-hand side, which are independent.ofhe re- N9 surface. First, if we assume that the anomalous sites are
maining terms in the infinite series have been dropped bestrung out along the axis by settingp;=p; and consider
cause they contain exponents in whigrappears with a co-  different values of; —z; we find the values

efficient greater than 1. Equatid@.24) indicates that when .

£~0 thei-dependent terms are of ordezl/which causes 4~ 4~ (1) 0.46, (2) 0.22, (3) 0.14, (4) 0.10,
an error of 5% or less for realistic choices of parameters.
Hence, on settingé=0 we obtain an estimatgy;; —1

Eled%O'%' We can get a cr_ude estimate_ of these apprOXiThese were calculated for points in the middle of a slab of
mations on the contrast function by replacing a term such a§,i~nes<z = 41 and are roughly proportional to| 2/~ z;|. If

Pi(r|$)Pn-i(§]ro) in Eq. (2.18 by Pi(r[S)pn-(SlTo), where the value ofz is held constant so that the anomalous points

sis a point in the center of the clustén fact, when the 4.0 |ocated in a plane the results obtained for differences

anomalous sites are sufficiently far from the absorbingmeasured along an axis in the planesfre very closely
boundaries the product does not vary significantly with the|requal to those just shown, again with the proviso that the

exact positions With this further simplification we find anomalous points are close to the center of the slab.

One gets numbers similar to those just shown if one si-
multaneously varies th@'s and z's. For example, if|p
—pi|=1zi—z]=1, thenpy;;=0.32, which is only slightly

- E + (2.24

3 (e z2% o (Z-z)V2%
Z Z—1z

(5) 0.08, (6) 0.06.

k
Cop~ Tro 66 CPL, 229
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less than the results calculated for the nearest neighboringhich provides a solution to the lattice problem exact to
points as given above. Further numerical explorations indiwithin the number of digits available for the computation
cate that the value of thfz;} has to be within two lattice [19,20.

units from the slab surfaces for there to be noticeable differ- We have carried out numerical calculations to compare
ences from the numbers shown. The results are essentialtiie contrast function predicted by the additive-sites model in

insensitive to the value o whenzZ=20. Eqg.(2.18, which has no correlation terms to the lowest order
These considerations allow us to approximate the denomipproximation that does, which combines E8.16 and
nator termD (&, 7) as (2.27 and substitutes the result into EQ.5). To this order

of approximation the contrast function can be written as
D(&,7)~1+0.66k7n+ 7°[(0.66)°k(k—1)—B]
(2.27 [1+0.66Kk—1) 7]W,(r|rg;S)— nUy(r|ro;S)

- Cn(pik)~7n 1+0.66kn+ 77(0.662k(k—1)—B]
in which ©2

k k . . : .
r=(p.Z—1) and B=2 2 f’(z)ij- (2.28 in which U (r|rg) is the inverse transform

j=li(®)j=1 " K K
To the order of the approximation shown, the effect of cor- Un(rlro;9)=L"" i(%‘;l ]241 f’§(r|~°’j)f’§(~°ﬁ|5)f’6(5|r0)]-
relations in the denominator of ER.5 appears only in the (3.3

single termB defined in Eq{(2.28 which is therefore to be

compared to the term (0.6&(k—1). For a cube of ¥3 1 simplify calculations we discuss properties ©f(p;k)

X3 points, centered a=10 with Z=21 the value oB is ¢4 5 coaxial beam passing through the center of the cubic
equal to 16% of the first term in square brackets. Thus, wheg) ster as shown in Fig. 1.

7 is large enough that the? term gives a noticeable contri- In the largen regime the value ofW,(r|re:S) can be
bution to the contrast but the® term can be ignored, the written as
correlation correction to thg? term is small but not entirely
negligible. Also, sincd is positive, the effect of correlations sp ko -
in the present approximation is to enhance the contrast. For Wn(r|r0;S)~<—> > > X 06t
the slightly larger cube of points»65X 5, likewise cegtered j=ll=—oe oo
at z=10, the value ofB is 6.4% of the term (0.66k(k i . o
—1). These results suggest that body shape becomes less +Gn (LI =Gn (L) =G, (L)
important in determining contrast as the size of the body (3.9
increases.

in which, for example,

I1l. SOME NUMERICAL CALCULATIONS
L . _ 1 /1 1 3 _
A. The contrast function in discrete time Gy (L")==p|—=+ P~ exp — o5 (a"+b,)?|,
n“<\a , n
Numerical calculations are required to determine the or- ! ! (3.5
der of magnitude of correlation effects in the numerator of '
Eq. (2.5 as found from the second-order term in E2.16).
- . AL where
To simplify these calculations for terms appearing in the

function W,,(r|r,) we make use of the approximation

a” =\p'+(zx1+212)? 39

" n+1
20 p|(3j|ro)pn—|(r|51)“fo Pi(sIro)Pn+1-1(r]s)dl. bi = p?+(Z— 177+ 212)2.

(3.)
The functionU(r|ry;S) that appears in Eq3.2) has the

This is consistent with our use of a largeapproximation to  slightly more complicated form
the propagator. The factorin the sum has been replaced by
n+1 in the integral to reconcile the use of the Gaussiarun(r|r0;5)
propagator, i.e., one that describes motion in a continuum,
with a lattice formulation. This accounts for the fact that the 3\ X e
theory actually calculates a first-passage time to the point ”( ) E 2 2 2 2 [H
The sum on left-hand side of E.1) refers to the trajectory N
to a site atz=Z—1 while the propagator in the Gaussian ~ +H "7 (-)+HI " T()+H, " ()—-HI T ()
approximation refers to a continuum picture, which takes the . . -
photon toz=Z. To compensate for this difference we have ~ —Hn  (:)=Hg " (-)=H, ()] 3.7
replacedn by n+1 on the right-hand side of the equation.
That this provides a qualitatively more accurate solution haghe H, functions that appear here have a form exemplified
been checked using the technique of exact enumeratiofy
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1.00

0.90

FIG. 2. The ratio of contrasts with and with-
out the first-order correction for a cube ok3
X 3 points in a slab oZ=21 sites. Calculations
were made only for the coaxial configuration in
which ry=(0,0,1), r=(0,0,20), the cube being
centered af0,0,10.
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e 1 1 1 1 tance of correlation terms. Whepis close to 1 the photon is
Hy " (L= —=p| =+ ==+ —= most likely to be absorbed at the first anomalous site visited,
n a' b b/,c C,,a . e ! ;
LR e el hence correlations tend to be less significant. This effect is

reflected in the slight decrease inC{)(0,27;
(3.8 2)/c(9(0,27;7) observed at the larger values gin Fig. 2.
To further examine correlation effects we have also calcu-
lated the valuep’, which is the solution to

3 .
Xexp{— > (' +b, +cp,)?

in which, in addition to the variables;” andb;" defined in

Eq. (3.6) we have also used
Cc(9(0,27;7")=C'"(0,27:7). (3.10

¢ =\pi+(Z-1x7+212)% (3.9

o ] . That is to say, we calculate the absorption probability re-
Derivations of Eqs(3.4) and(3.7) are given in the Appen- quired to bring the additive-sites model into coincidence
dix. ) ) ) - ~with a model taking correlations into account. The results are

A comparison of results obtained using the addltlve-sne%ﬂotted in Fig. 3. Although we have chosam=1, increas-

model[Eq. (2.18] and the first-order correction in E¢.2) ing the value of the time changes the results by only an
is shown in Fig. 2. LetC{)(0,27;7) denote the first-order insignificant amount so that Fig. 3 can be considered typical.
corrected contrast function for 27 anomalous points arrangeg/e see that at values efless than 0.015, to a good approxi-
in a cube and 1e€{0)(0,27;7) be the contrast function in the mation 5’ = ». The deviations become much more notice-
additive-sites approximation. The curves in Fig. 2 are of theable at larger values of the absorption. For exampley at
ratio C{2)(0,27;%)/C{9)(0,27;7) plotted as a function of the =0.02 the relative discrepancy between the two approximate
absorption probabilityy. When =0 the ratio is equal to 1 results is 8.4% and a3=0.03 it is 14.6%. Whether this is to
and is seen to increase gsncreases. The increase at small be considered an accurate approximation would depend on
7 reflects the fact that a photon generally must visit severalhe magnitude of measurement error. With a smaller number
sites before being absorbed, thereby emphasizing the impoof anomalous points;’ ~ » over a greater range of.

004
r’,/ .
L .
. -+ [ ]
0.03 .
. - .
) . FIG. 3. A plot of »', which is generated from
= 002 ¢ e the equationC{?(0,27;7")=C{"(0,27;7). The
straight line isn’ = » and the points indicate that
P n' <n whenevery differs from 0.
0.01 | &
v
ooo 1 1 1 1 1 il 1 1 1 1

0.005 0.01 0015 0.02 0025 003 0035 0.04 0045 0.05
n
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B. Conversion of dimensionless units to physical ones havior expressible in terms of absorption. A similar formal-
ofsm can be developed when the anomaly occurs in the scat-
tering coefficient, or in both. The formalism required to
analyze this more general case has recently been developed
in another context in21]. An alternative formalism for in-
corporating anomalous scattering into the general analysis is
given in[22]. A further feature easily incorporated into the
formalism is one in which the normal points also allow for
Z=zullv2, (3.11) absorption. This has not been included in the present report.
Work is presently in progress on recasting the random
where u! is the transport-corrected scattering coefficientwalk theory in terms of the continuous-time random walk
[18]. Let ¢ be the speed of light in the medium. Then the[10], which simplifies many features of the theory. The re-
time in physical units can be related to the discrete tnyy ~ sults will be reported elsewhere.
t=n/(cuy). If the absorption coefficient is denoted Iy,
then, as noted ifiL 1], to a good approximation the parameter ACKNOWLEDGEMENTS

nis given by n=pu,/ps .

While our theoretical results are expressed in terms
lattice units for both space and time, they are readily con
verted to physical units. These will be denoted by a bar ove
the symbol, so that is a physical length that corresponds to
the dimensionless coordinate The relation between the di-
mensionless and physical spatial variables is

We are grateful to Dr. Victor Chernomordik and Dr.
Ralph Nossal for their careful reading of this paper and for
several useful comments.

Our calculations presume that the absorption probability
at a single site is small, as is generally true for transillumi- APPENDIX: FORMULA USED TO CALCULATE THE
nation experiments that use NIR radiation. This circumstance CONTRAST FUNCTIONS
allows us to develop a perturbation expansion that greatly The formula forW.

simplifies the evaluation of the determinants in the exac ; ) : :
expression in Eq(2.5). The results obtained using this for- %g?rﬁ:goitgrfﬁnigféﬂ(;ng)) Ifj?effﬁelc)j &/WIII be expressed in
n 1

malism suggest that at physiologically realistic values of the
absorption probability it would be difficult to distinguish be- 1 1 1 3
tween different configurations of clusters of anomalous sites. G (a,b)= —p | =+ —= ex;{ e ( \/5.4_ \/5)2}
This tends to support the analysis proposedi9hin which n Va b 2n

only a single site was used to derive results that were then (A1)
applied to nonlocal clusters of anomalous points. Whether a
approximation based on replacing several sites by a sing|

IV. DISCUSSION

W(r|ro) is found by substituting the

%nd the variables

one is also useful whem is not small has not yet been a.(j,m)=(p—p)2+[si(z) = 1+2mZ]?,
addressed to our knowledge. 4fis close to 1 it is unclear - ! ! (A2)
whether the use of random walk theory using the large- B.(j,m)=(pj—p)>+[(2m'+1)Z—1+5(2)]2.

approximation in Eq(2.21) is still an appropriate one to use.
Finally, the present paper considers only anomalous beFhe contrast function for a single site is now written as

c 1 _( ) E;:_WEE,:_W[GH(Q+,,3+)+Gn(a,,ﬁ,)—Gn(aJr,B,)—Gn(a,,,BJr)]
(D=5 e (exp{—3[(2m+1)Z—2]%2n} —exd —3(2m+1)2Z%2n])

(A3)

which has been used to generate the curves described in the text. The formuldAiHoas been generated by multiplying
appropriate transformG,(a) as defined in Eq(2.23 together according to the expansion provided by the method of images,
and finally inverting the result. A similar method has been used to generate the furktjitimst appear in Eq$3.7) and(3.8).
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