
PHYSICAL REVIEW E SEPTEMBER 1997VOLUME 56, NUMBER 3
Effects of nonlocalized target shape in the random walk description of transillumination
experiments for optical imaging
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A lattice random walk theory has been successfully used to interpret and analyze a variety of experimental
data related to applications in optical imaging. A major advantage of the lattice theory is that it replaces
cumbersome eigenfunction expansions resulting from diffusion theory by simpler relations expressed in terms
of generating functions. The transillumination experiment has previously been analyzed by representing a
region of increased absorptive properties in tissue by a single anomalous point. Here we extend the analysis to
allow for k anomalous sites, thus providing a tool for studying the effects of nonlocality of the anomalous
region. We show that if the absorption coefficient in the anomalous region is sufficiently small, the simple
approximation based on the use of a single point with an anomalous absorption coefficient yields quite good
results as compared to data obtained from phantoms. It is shown that the neglect of correlation effects leads to
an underestimate of the absorption coefficient in an anomalous region.@S1063-651X~97!12109-2#

PACS number~s!: 87.10.1e, 05.40.1j
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I. INTRODUCTION

Many research groups are presently exploring the poss
use of optical methods as a tool for clinical imaging, and
vast literature on this subject has been produced, cf.,
example@1,2#. Optical techniques are attractive as a biome
cal tool because they do not involve the use of ionizing
diation. Optical imaging techniques depend on there bein
difference between optical properties of an embedded ab
mal body and those of the tissue surrounding it. These
ferences may be in the absorption or scattering coefficie
or both. At the same time a major drawback to successf
implementing optical methods is the lesser degree of res
tion obtainable as compared to that associated with x
imaging techniques. This is attributable to multiple scatter
of the photons by tissue inhomogeneities, which produ
image blurring. This negative effect can be partially ov
come in transmission imaging by using time-gated transi
mination experiments,~cf. Fig. 1!. In the implementation of
transillumination measurements the role of time gating is
select photons that arrive at the detector at the earliest
sible times. This selection is equivalent to utilizing tho
photons whose paths are most localized spatially in trav
ing the tissue, and which not have had time to diffuse by
appreciable amount.

The design of imaging instrumentation based on time g
ing requires choosing the time-gating period. Too shor
period results in the image being dominated by noise.
addition, the fact that the photon intensity is necessarily q
low at very short times is a negative factor to be conside
in clinical applications of such technology. On the oth
hand, too long a gating time, although providing an a
equately detectable number of photons, degrades both
trast and resolution due to wandering due to diffusion.
order to examine questions related to the tradeoffs invol
561063-651X/97/56~3!/3451~9!/$10.00
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in choosing the time-gating period it is necessary to mo
the kinetics of photon migration in a turbid medium. Man
analytical and numerical approaches have been used i
attempt to solve this problem to balance the accuracy o
rigorous physical model with the convenience of a more
proximate one requiring a simpler mathematical formali
for its exploitation. From the physical viewpoint the mo
accurate class of models for this purpose are those base
the solution of a full transport equation, but such equatio
are only solvable numerically for realistic problems. Als
neither the form nor the parameters that define the scatte

FIG. 1. Schematic diagram of the transillumination experime
In our analysis of the coaxial experiment the source and detecto
taken to be collinear with the center of the anomalous region. If
detector is moved relative to the source the numerical results w
be qualitatively similar.
3451 © 1997 The American Physical Society
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kernel are known to any degree of precision. Because
these difficulties the analysis of photon migration in a turb
medium is often based on the use of considerably simpli
phenomenological models whose utility is measured by h
well they produce results in accord with experiments.

An obvious candidate for a simplified model of photo
motion is the standard diffusion process, which has ind
been used successfully by many investigators,@3–5#. Diffu-
sion models, however, have the negative feature that sol
a problem with an inclusion and with boundaries requires
solution of a generally quite complicated boundary-va
problem, as exemplified by analysis in the paper by d
Outer, Niewenhuizen, and Lagendijk@6#. An alternative to a
diffusion-theory-based model is one based on the discr
time lattice random walk@7,8#. Random walk models hav
successfully been used to reconstruct images from exp
mental data obtained from measurements using phant
@9#. Further, the central-limit theorem guarantees that m
results derived from the theory of random walks will agre
after proper scaling, with those derived from diffusion theo
@10#.

Relevant to the present discussion is that a formal
based on the lattice random walk model can simplify pro
lems that involve inclusions because the boundary va
problems for the diffusion equation are replaced by proble
that require dealing only with discrete quantities. A furth
advantage of this formulation accrues from the fact t
many random walk problems are solvable in terms of gen
ating functions. Such solutions are applicable, without f
ther approximation, to interpret results obtained us
frequency-domain spectroscopy.

An example in which the random walk formalism h
been used appeared recently in a study of absorptivity c
trast in transillumination imaging of tissue inclusions@11#.
This investigation, as well as more recent ones on reflec
experiments as used in fluorescence spectroscopy@12,13#,
approximated the anomalous region by a single lattice po
In an earlier application based on random walk methodol
we used an ad hoc approximation that omitted all corre
tions, by which we mean the possibility of photons hoppi
between different anomalous sites. This artifice allowed u
take into account differently shaped sets of anomalous po
without unduly complicating the necessary numerical co
putations@9#. The analysis to follow is aimed at an approx
mate assessment of the penalty incurred by neglecting t
correlations.

In this paper we deal with a case in which the anomal
points have absorption coefficients that differ from those
the master lattice whose properties model the normal tis
When NIR radiation is used for imaging purposes expe
mental values of the absorption coefficient with an anom
lous site tends to be very small when expressed in dim
sionless units. This circumstance allows us to exploi
perturbation expansion of the exact generating function
facilitates examining the difference between the propag
in the presence and absence of the set of anomalous site
particular, this study is aimed at assessing correlation eff
and at incorporating these effects, at least approximat
into the analysis. We will assume that the absorptivity
points outside of the anomalous set is negligible, and w
accordingly be set equal to zero. The theory is easily ge
of
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alized to allow for absorption on nonanomalous sites.

II. ANALYSIS

A. General formalism

The slab of tissue shown in Fig. 1 is modeled as a sim
cubic lattice bounded by two parallel planes. The coordina
of an arbitrary point on the lattice will be denoted byr
5(x,y,z), the components of which are integers that sati
2`<x,y<` and 0<z<Z. Our use of integer units is con
venient for the following analysis; later we indicate how
convert the results to physical units. The set of anomal
points will be denoted byS5(s1 ,s2 ,...,sk). The two parallel
interfaces that define the slab,z50 and z5Z, will be as-
sumed to consist only of absorbing points so that a pho
that reaches one or the other of the two faces is insta
absorbed there. The initial position of an injected photon w
be denoted byr05(0,0,1) so that the lattice spacing is of th
order of a scattering length. Photon motion will be mode
in terms of an isotropic random walk on a simple cubic l
tice. The random walk will be allowed to take steps to ne
est neighboring sites only, so that the probability that a p
ton moves to a particular neighboring site in a single step
equal to 1

6 . We seek to determine the number and distrib
tion of photons that reachz5Z at stepn in the presence of
the setS.

The probability that a photon, on hitting a site belongi
to S, is absorbed at that site will be denoted byh so thath
51 corresponds to a completely absorbing site. To simp
our analysis we will assume that the absorption probabi
of any site not inS is equal to zero. This is realistic sinc
when NIR radiation is used the values ofh tend to be rather
small ~typical values are between 0.01 and 0.05@14#!. This
feature will be exploited to develop a perturbation expans
of the exact solution. Other alternatives require rather cu
bersome calculations.

A complete description of photon motion is contained
two sets of probabilities:$pn(r ur0)% and $qn(r ur0)%. The
function pn(r ur0) is the probability that a photon on a lattic
slab with absorbing boundaries moves from the siter0 to r in
n steps when there are no anomalous sites. The func
qn(r ur0) is the probability that the photon moves fromr0 to
r in n steps, taking both the absorbing interfaces and
anomalous sites into account. This latter set of probabili
is the one required to describe the physics inherent in
particular problem, but theqn(r ur0) can be expressed in
terms of thepn(r ur0), for which exact expressions are ava
able @10#.

In the lattice random walk model the flux of photons in
a siter5(x,y,Z) at thenth step of the random walk is

Jn~r !5qn21~x,y,Z21u0,0,1!/6 ~2.1!

since, in order to reachr at stepn the photon must reach
(x,y,Z21) at stepn21, thenth step taking it fromZ21 to
Z with probability 1/6. Hence we see that the flux is direc
related to the state probabilityqn(r ur0). The two sets of
probabilities are not easily related to one another, but th
generating functions are.
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The generating function of an arbitrary sequence$gn% will
be denoted byĝj , which is

ĝj5 (
n50

`

gne2nj. ~2.2!

A relation betweenq̂j(r ur0) and p̂j(r ur0) can be established
following the analysis in@16#. That paper contains a calcu
lation of then-step propagator for a random walk condition
on the number of visits to sites in a setS, a function that will
be denoted bypn(r ur0 ; l). More precisely, these are th
n-step propagators conditional on makingl 1 visits to s1 ,l 2
visits tos2 , and so forth. These probabilities cannot be fou
directly. However, it is possible to find an explicit expressi
for the related generating function

G~r ur0 ;a,b!5 (
n50

`

bn (
l 150

`

••• (
l k50

`

pn~r ur0 ; l!a1
l 1a2

l 2•••ak
l k,

~2.3!

where thea i and b are variables that define the generati
function. To translate this form of the generating functi
into the form required in the present paper one notes tha
e

th

t

f

se
l

d

in

order for the photon to reachr at stepn it is necessary tha
no visit to S should have resulted in the photon being a
sorbed there. This requirement is expressible in terms
G(r ur0 ;a,b) as defined in Eq.~2.3! by settinga i512h,
i (Þ j )51,2, . . . ,k. To complete the transition from the gen
erating function in Eq.~2.3! to an equivalent one for the
qn(r ur0) one setsb5exp(2j).

To simplify notation we abbreviate the generating fun
tions for transitions between sites inS with no anomalous
sites as

p̂j,i j [ p̂j~si usj !. ~2.4!

The desired relation has been shown to be expressible a

q̂j~r ur0!5H p̂j~r ur0!2h(
j 51

k
D j~j,h!

D~j,h!
p̂j~r usj !, r¹S

~12h!
D j~j,h!

D~j,h!
, rPS

~2.5!

in @15#. In this equationD(j,h) is thek3k determinant
D~j,h!5U11h~ p̂j,1121!

j p̂j,21

A
h p̂j,k1

h p̂j,12

11h~ p̂j,2221!

A
h p̂j,k2

•••
•••
�

•••

h p̂j,1k

h p̂j,2k

A
11h~ p̂j,kk21!

U ~2.6!
the
,

ur-
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te
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rat-
es
and D j (j,h) is found fromD(j,h) by replacing columnj
by a vector whosel th component isp̂j(sl ur0). In the case of
a single anomalous site ats, Eq. ~2.5! reduces to

q̂j~r ur0!5 p̂j~r ur0!2h
p̂j~r us! p̂j~sur0!

11h@ p̂j~sus!21#
, ~2.7!

which is the result used in@11# and which can be derived
without resorting to the more general analysis in@15#.

The contrast function at stepn measured at a point on th
boundaryr5(x,y,Z) will be denoted byCn(rur0), wherer
is the two-dimensional vector (x,y). It is defined as

Cn~rur0!512
qn~rur0!

pn~rur0!
~2.8!

and is a measure of the change in the flux induced by
presence of a set of absorbing sites. On returning to Eq.~2.5!
we see that the contrast function can be expressed in
general form

Cn~rur0!5h
( j 51

k ( l 50
n Al

~ j !~r,sj !pn2 l~r usj !

pn~rur0!
, ~2.9!

in which the functionsAm
( j )(r,sj ) are found as the inverse o

the generating functionsD j (j,h)/D(j,h) regarded as a
function of j. It is not generally possible to calculate the
e

he

inverses in closed form. However, taking advantage of
fact thath is small for applications involving NIR radiation
we can expand bothD j (j,h) andD(j,h) in a perturbation
series, from which one can obtain approximations to theAm

( j )

that appear in Eq.~2.9!.
Before discussing some of the implications of the pert

bation expansion we introduce what will be referred to as
additive-sites model, which neglects all correlation effec
and uses the further approximation that all of the diago
terms in D(j,h) are equal. This last assumption is qui
accurate provided that the anomalous sites are not loc
within one or two lattice spacings from either of the boun
aries. Accordingly we setp̂j,115 p̂j,225•••5 p̂j,kk5 p̂j,d .
Both D(j,h) andD j (j,h) can be found in closed form fo
the additive-sites model:

D~j,h!5@11h~ p̂j,d21!#k,

D j~j,h5 p̂j~sl ur0!@11h~ p̂j,d21!#k21. ~2.10!

But this means that

D j~j,h!

D~j,h!
5

p̂j~sl ur 0!

11h~ p̂j,d21!
. ~2.11!

In the additive-sites model the relation between the gene
ing function for the propagator allowing for anomalous sit
and the propagator for the homogeneous lattice is
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q̂j~r ur0!' p̂j~r ur0!2h
Ŵj~r ur0 ;S!

11h~ p̂j,d21!
. ~2.12!

Here we have written

Ŵj~r ur0 ;S!5(
j 51

k

p̂j~r usj ! p̂j~sj ur0!, ~2.13!

the time-domain equivalent of this relation being

Wn~r ur0 ;S!5(
j 51

k

(
l 50

n

pl~r usj !pn2 l~sj ur0!. ~2.14!

Thus, the approximation in Eq.~2.12! neglects events in
which a photon hops from one of the anomalous sites
another. In the remainder of the paper we use a perturba
expansion of the result in Eq.~2.5! to explore some conse
quences of including such events.

B. The perturbation expansion

Here we consider the detailed form of the expansions
D(j,h) andD j (j,h) aroundh50. The first two terms in the
expansion ofD(j,h) are

D~j,h!'11h(
j 51

k

@~ p̂j, j j 21!#

1
h2

2 (
i ~Þ j !51

k

(
j 51

k

$~ p̂j,i i 21!~ p̂j, j j 21!

2 p̂j,i j p̂j, j i %1••• . ~2.15!

Since properties of the random walk are assumed to be
tropic the correlation terms are symmetric in the sense
p̂j,i j 5 p̂j, j i . Similarly, the lowest order terms in the expa
sion of D j (j,h) are

D j~j,h!' p̂j~sj ur0!1hH p̂j~sj ur0! (
i ~Þ j !51

k

@ p̂j,i i 21#

2 (
i ~Þ j !51

k

p̂j~si ur0! p̂j,i j J . ~2.16!

Two observations should be made at this point. First,
observe that if the expansion ofD(j,h) is truncated at the
first order in h and only the leading term inD j (j,h) is
retained, the approximation to Eq.~2.5! for r¹S will have
the same functional form as Eq.~2.7! except that the term
@ p̂j(sus)21# in that equation is replaced here by the su

( j 51
k ( p̂j, j j 21). As mentioned earlier, we can setp̂j, j j

' p̂j,d so that the sum reduces to

(
j 51

k

~ p̂j, j j 21!'k~ p̂j,d21!. ~2.17!

Later we show that in the large-n limit, equivalent to the
limit j→0, the termp̂j,d approaches a constant,p̂0,d . Hence,
in the large-n limit the additive-sites approximation i
equivalent to
o
on

f

o-
at

e

qn~r ur0!'pn~r ur0!2h
Wn~r ur0 ;S!

11h~ p̂0,d21!
. ~2.18!

Our second observation is that correlations between
ferent sites inS appear only in the termsp̂j,i j in which i
Þ j . A glance at Eqs.~2.15! and ~2.16! indicates that these
terms do not appear in the terms proportional toh in the
numerator and denominator terms but do appear in the c
ficients ofh2. Provided that suitable expressions for thep̂j,d
can be found, Eq.~2.12! can be used without further approx
mation to study frequency-domain spectroscopy by replac
j by iv/(cms8), wherev is the frequency,c is the speed of
light in the slab, andms8 is the transport-corrected scatterin
factor. The form of the relation in Eq.~2.18! furnishes a
simple and readily implementable approximation
qn(r ur0). It can be shown to be accurate whenever the pr
uct kh is small. This can sometimes be a realistic assump
for quite large clusters of anomalous sites. Recently p
lished data on optical properties of both healthy and can
ous breast tissue in the near infrared indicates that the va
of h may be as low as 0.001@14,16#, but more commonly are
of the order of 0.01–0.02@18#.

C. Approximations to the generating functions

1. The additive-sites model

To draw further conclusions from the analysis we mu
specify usable approximations to the propagators that ap
in Eqs. ~2.5! and ~2.6!. For this purpose we note that tran
lation of typical tissue slab widths into the integer units us
in the random walk analysis suggest that these widths
typically of the order of 20–40 lattice spacings. Although
is possible to provide exact expressions for the propaga
of the nearest-neighbor random walk used here@17#, it is
nevertheless convenient to work in terms of the Gauss
approximation, which is equivalent to takingn to be large.
This is justified by the observation thatn, in discrete units,
must be at least as great as the slab width. To somew
simplify the form of the resulting expressions we will distin
guish between the variation between the (x,y) coordinates
and thez coordinate by defining the two-dimensional vect
r5(x,y), allowing us to express the vectorr as r5(r,z).

The Gaussian approximation to the propagator in f
space is

pn,FS~r ur0!'S 3

2pnD 2/3

expF2
3

2n
$~r2r0!21~z2z0!2%G ,

~2.19!

wherer0 is the point in the (x,y) plane associated withr0 .
The posited physical picture requires that the boundarie
z50 and z5Z should consist only of absorbing point
which is equivalent to requiring that the boundary conditio

pn~r,0ur0!5pn~r,Zur0!50 ~2.20!

be satisfied. The propagator that takes into account absor
boundaries is
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pn~r ur0!'d r•r0
dn,01S 3

2pnD 3/2

expF2
3

2n
~r2r0!2G (

j 52`

` FexpH 2
3

2n
~z2z012 jZ !2J 2expH 2

3

2n
~z1z012 jZ !2J G .

~2.21!

An additional factor ofd r•r0
dn,0 , corresponding to the initial condition, is included, since the calculation ofp̂j,i i requires that

the behavior atn50 should be correctly accounted for.
We will calculate an approximate but convenient form for the generating functionp̂j(r ur0) by replacing the sum overn by

an integral so that, for example,

p̂j~r ur0!'E
0

`

e2jnpn~r ur0!dn5d r ,r 0
1

3

2p (
j 52`

`

@Ĝj~A~r2r0!21~z2z012 jZ !2!2Ĝj~A~r2r0!21~z1z012 jZ !2!#,

~2.22!
st
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whereĜj(a) is the function

Ĝj~a!5
e2aA6j

a
. ~2.23!

Notice that the approximation in Eq.~2.22! cannot be used
when r5r0 since the term withj 50 will be infinite. Hence
the evaluation of the self-termsp̂j,i i 5 p̂j(si usi) requires a
slight modification of the preceding analysis, which consi
of accounting exactly for then50 term and setting the lowe
limit on the integral in Eq.~2.22! at n51. Letzi be the value
of z in si . We assume thatzi andZ are much greater than
and thatZ@zi , which means that an anomalous site is n
too close to either of the boundaries. A consequence of
assumption is that the generating functionp̂j,i i is nearly in-
dependent ofi . This assertion is based on retaining only t
lowest order terms of the series in the expansion given in
~2.22!:

p̂j,i i '11S 3

2p D 3/2E
1

` e2jn

n3/2 dn

2
3

4p H e2ziA24j

zi
1

e2~Z2zi !A24j

Z2zi
J . ~2.24!

The dominant terms in this expression are the first two te
on the right-hand side, which are independent ofi . The re-
maining terms in the infinite series have been dropped
cause they contain exponents in whichZ appears with a co-
efficient greater than 1. Equation~2.24! indicates that when
j'0 the i -dependent terms are of order 1/zi , which causes
an error of 5% or less for realistic choices of paramete
Hence, on settingj50 we obtain an estimatep̂0,i i 21
[ p̂0,d'0.66. We can get a crude estimate of these appr
mations on the contrast function by replacing a term such
pl(r usj )pn2 l(sj ur0) in Eq. ~2.18! by pl(r us̄)pn2 l( s̄ur0), where
s̄ is a point in the center of the cluster~in fact, when the
anomalous sites are sufficiently far from the absorb
boundaries the product does not vary significantly with th
exact positions!. With this further simplification we find

Cn~r;k!'
kh

110.66h
Cn~r;1!, ~2.25!
s

t
is

q.

s

e-

s.

i-
s

g
ir

whereCn(r;1) is calculated as if there were a single anom
lous site at s̄. Thus, in the additive-site approximatio
Cn(r;k) is, to a first approximation, proportional to the num
ber of anomalous sites.

2. Correlation effects

Corrections for correlation effects, i.e., inclusion of th
terms proportional toh2, must be made in both the numer
tor and denominator of Eq.~2.5!. Consider first the specifics
of the correction appearing in the denominator. We retain
assumption that the terms in the denominator do not dep
on specific sites and can therefore be regarded as const
Hence we make use of the small-j approximation top̂j,i j
given in Eq.~2.22!, which yields

p̂0,i j '
3

2p (
l 52`

` H 1

A~ri2rj !
21~zi2zj12lZ !2

2
1

A~ri2rj !
21~zi1zj12lZ !2J , iÞ j .

~2.26!

We calculate a few values ofp̂0,i j for Z541 to give some
idea of how these terms compare to the diagonal ter
which are all approximately equal to 0.66 provided that no
of the sites is within one or two lattice units from an abso
ing surface. First, if we assume that the anomalous sites
strung out along thez axis by settingri5rj and consider
different values ofzi2zj we find the values

zi2zj : ~1! 0.46, ~2! 0.22, ~3! 0.14, ~4! 0.10,

~5! 0.08, ~6! 0.06.

These were calculated for points in the middle of a slab
thicknessZ541 and are roughly proportional to 1/uzi2zj u. If
the value ofz is held constant so that the anomalous poi
are located in a plane the results obtained for differen
measured along an axis in the plane ofr are very closely
equal to those just shown, again with the proviso that
anomalous points are close to the center of the slab.

One gets numbers similar to those just shown if one
multaneously varies ther’s and z’s. For example, ifuri
2rj u5uzi2zj u51, then p̂0,i j 50.32, which is only slightly
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less than the results calculated for the nearest neighbo
points as given above. Further numerical explorations in
cate that the value of the$zi% has to be within two lattice
units from the slab surfaces for there to be noticeable dif
ences from the numbers shown. The results are essen
insensitive to the value ofZ whenZ>20.

These considerations allow us to approximate the deno
nator termD̂(j,h) as

D̂~j,h!'110.66kh1h2@~0.66!2k~k21!2B#
~2.27!

in which

r5~r,Z21! and B5(
j 51

k

(
i ~Þ! j 51

k

p̂0,i j
2 . ~2.28!

To the order of the approximation shown, the effect of c
relations in the denominator of Eq.~2.5! appears only in the
single termB defined in Eq.~2.28! which is therefore to be
compared to the term (0.66)2k(k21). For a cube of 333
33 points, centered atz510 with Z521 the value ofB is
equal to 16% of the first term in square brackets. Thus, w
h is large enough that theh2 term gives a noticeable contr
bution to the contrast but theh3 term can be ignored, the
correlation correction to theh2 term is small but not entirely
negligible. Also, sinceB is positive, the effect of correlation
in the present approximation is to enhance the contrast.
the slightly larger cube of points, 53535, likewise centered
at z510, the value ofB is 6.4% of the term (0.66)2k(k
21). These results suggest that body shape becomes
important in determining contrast as the size of the bo
increases.

III. SOME NUMERICAL CALCULATIONS

A. The contrast function in discrete time

Numerical calculations are required to determine the
der of magnitude of correlation effects in the numerator
Eq. ~2.5! as found from the second-order term in Eq.~2.16!.
To simplify these calculations for terms appearing in t
function Wn(r ur0) we make use of the approximation

(
l 50

n

pl~sj ur0!pn2 l~r usj !'E
0

n11

pl~sj ur0!pn112 l~r usj !dl.

~3.1!

This is consistent with our use of a large-n approximation to
the propagator. The factorn in the sum has been replaced b
n11 in the integral to reconcile the use of the Gauss
propagator, i.e., one that describes motion in a continu
with a lattice formulation. This accounts for the fact that t
theory actually calculates a first-passage time to the poinr .
The sum on left-hand side of Eq.~3.1! refers to the trajectory
to a site atz5Z21 while the propagator in the Gaussia
approximation refers to a continuum picture, which takes
photon toz5Z. To compensate for this difference we ha
replacedn by n11 on the right-hand side of the equatio
That this provides a qualitatively more accurate solution
been checked using the technique of exact enumera
ng
i-

r-
lly

i-

-

n

or

ess
y

r-
f

n
,

e

s
n,

which provides a solution to the lattice problem exact
within the number of digits available for the computatio
@19,20#.

We have carried out numerical calculations to comp
the contrast function predicted by the additive-sites mode
Eq. ~2.18!, which has no correlation terms to the lowest ord
approximation that does, which combines Eq.~2.16! and
~2.27! and substitutes the result into Eq.~2.5!. To this order
of approximation the contrast function can be written as

Cn~r;k!'h
@110.66~k21!h#Wn~r ur0 ;S!2hUn~r ur0 ;S!

110.66kh1h2@~0.66!2k~k21!2B#
~3.2!

in which Un(r ur0) is the inverse transform

Un~r ur0 ;S!5L21H (
i ~Þ j !51

k

(
j 51

k

p̂j~r usj ! p̂j~sj usi ! p̂j~si ur0!J .

~3.3!

To simplify calculations we discuss properties ofCn(r;k)
for a coaxial beam passing through the center of the cu
cluster, as shown in Fig. 1.

In the large-n regime the value ofWn(r ur0 ;S) can be
written as

Wn~r ur0 ;S!'S 3

2p D 5/2

(
j 51

k

(
l 52`

`

(
l 852`

`

@Gn
11~ l ,l 8!

1Gn
22~ l ,l 8!2Gn

12~ l ,l 8!2Gn
21~ l ,l 8!#

~3.4!

in which, for example,

Gn
12~ l ,l 8!5

1

n3/2 S 1

al
1 1

1

bl 8
2D expF2

3

2n
~al

11bl 8
2

!2G ,
~3.5!

where

al
65Ar j

21~zj6112lZ !2,
~3.6!

bl
65Ar j

21~Z216zj12lZ !2.

The functionUn(r ur0 ;S) that appears in Eq.~3.2! has the
slightly more complicated form

Un~r ur0 ;S!

'S 3

2p D 7/2

(
j 51

k

(
i ~Þ j !51

k

(
l 52`

`

(
l 852`

`

(
l 952`

`

@Hn
222~• !

1Hn
112~• !1Hn

121~• !1Hn
211~• !2Hn

111~• !

2Hn
122~• !2Hn

212~• !2Hn
221~• !#. ~3.7!

The Hn functions that appear here have a form exemplifi
by
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FIG. 2. The ratio of contrasts with and with
out the first-order correction for a cube of 333
33 points in a slab ofZ521 sites. Calculations
were made only for the coaxial configuration
which r05(0,0,1), r5(0,0,20), the cube being
centered at~0,0,10!.
ite

r
ge
e
th

al
r
p

ed,
t is

cu-

re-
ce
are

an
cal.
i-
e-
t
ate

on
ber
Hn
112~ l ,l 8,l 9!5

1

n3/2 S 1

al
1bl 8

1 1
1

bl 8
1cl 9

2 1
1

cl 9
2al

1D
3expF2

3

2n
~al

11bl 8
1

1cl 9
2

!2G ~3.8!

in which, in addition to the variablesal
6 andbl

6 defined in
Eq. ~3.6! we have also used

cl
65Ar j

21~Z216zj12lZ !2. ~3.9!

Derivations of Eqs.~3.4! and ~3.7! are given in the Appen-
dix.

A comparison of results obtained using the additive-s
model@Eq. ~2.18!# and the first-order correction in Eq.~3.2!
is shown in Fig. 2. LetCDn

(1)(0,27;h) denote the first-orde
corrected contrast function for 27 anomalous points arran
in a cube and letCDn

(0)(0,27;h) be the contrast function in th
additive-sites approximation. The curves in Fig. 2 are of
ratio CDn

(1)(0,27;h)/CDn
(0)(0,27;h) plotted as a function of the

absorption probabilityh. Whenh50 the ratio is equal to 1
and is seen to increase ash increases. The increase at sm
h reflects the fact that a photon generally must visit seve
sites before being absorbed, thereby emphasizing the im
s

d

e

l
al
or-

tance of correlation terms. Whenh is close to 1 the photon is
most likely to be absorbed at the first anomalous site visit
hence correlations tend to be less significant. This effec
reflected in the slight decrease inCDn

(1)(0,27;
h)/CDn

(0)(0,27;h) observed at the larger values ofh in Fig. 2.
To further examine correlation effects we have also cal
lated the valueh8, which is the solution to

C1
~0!~0,27;h8!5C1

~1!~0,27;h!. ~3.10!

That is to say, we calculate the absorption probability
quired to bring the additive-sites model into coinciden
with a model taking correlations into account. The results
plotted in Fig. 3. Although we have chosenDn51, increas-
ing the value of the time changes the results by only
insignificant amount so that Fig. 3 can be considered typi
We see that at values ofh less than 0.015, to a good approx
mation h85h. The deviations become much more notic
able at larger values of the absorption. For example, ah
50.02 the relative discrepancy between the two approxim
results is 8.4% and ath50.03 it is 14.6%. Whether this is to
be considered an accurate approximation would depend
the magnitude of measurement error. With a smaller num
of anomalous pointsh8'h over a greater range ofh.
t

FIG. 3. A plot ofh8, which is generated from
the equationC1

(0)(0,27;h8)5C1
(1)(0,27;h). The

straight line ish85h and the points indicate tha
h8,h wheneverh differs from 0.
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B. Conversion of dimensionless units to physical ones

While our theoretical results are expressed in terms
lattice units for both space and time, they are readily c
verted to physical units. These will be denoted by a bar o
the symbol, so thatz̄ is a physical length that corresponds
the dimensionless coordinatez. The relation between the di
mensionless and physical spatial variables is

z̄5zms8/&, ~3.11!

where ms8 is the transport-corrected scattering coefficie
@18#. Let c be the speed of light in the medium. Then t
time in physical units can be related to the discrete timen by
t5n/(cms8). If the absorption coefficient is denoted byma

then, as noted in@11#, to a good approximation the paramet
h is given byh5ma /ms8 .

IV. DISCUSSION

Our calculations presume that the absorption probab
at a single site is small, as is generally true for transillum
nation experiments that use NIR radiation. This circumsta
allows us to develop a perturbation expansion that gre
simplifies the evaluation of the determinants in the ex
expression in Eq.~2.5!. The results obtained using this fo
malism suggest that at physiologically realistic values of
absorption probability it would be difficult to distinguish be
tween different configurations of clusters of anomalous si
This tends to support the analysis proposed in@9# in which
only a single site was used to derive results that were t
applied to nonlocal clusters of anomalous points. Whethe
approximation based on replacing several sites by a si
one is also useful whenh is not small has not yet bee
addressed to our knowledge. Ifh is close to 1 it is unclear
whether the use of random walk theory using the largn
approximation in Eq.~2.21! is still an appropriate one to use

Finally, the present paper considers only anomalous
o
l-

oc

R

f
-
r

t

y
-
e
ly
t

e

s.

n
n
le

e-

havior expressible in terms of absorption. A similar forma
ism can be developed when the anomaly occurs in the s
tering coefficient, or in both. The formalism required
analyze this more general case has recently been devel
in another context in@21#. An alternative formalism for in-
corporating anomalous scattering into the general analys
given in @22#. A further feature easily incorporated into th
formalism is one in which the normal points also allow f
absorption. This has not been included in the present rep

Work is presently in progress on recasting the rand
walk theory in terms of the continuous-time random wa
@10#, which simplifies many features of the theory. The r
sults will be reported elsewhere.
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APPENDIX: FORMULA USED TO CALCULATE THE
CONTRAST FUNCTIONS

The formula for Wn(r ur0) is found by substituting the
propagator in Eq.~2.21! into Eq.~3.1!. It will be expressed in
terms of a functionGn(a,b) defined by

Gn~a,b!5
1

n3/2 S 1

Aa
1

1

Ab
D expF2

3

2n
~Aa1Ab!2G

~A1!

and the variables

a6~ j ,m!5~rj2r!21@sj~z!6112mZ#2,
~A2!

b6~ j ,m8!5~rj2r!21@~2m811!Z216sj~z!#2.

The contrast function for a single site is now written as
g
ges,
Cn~r;1!5S 3

2p D (m52`
` (m852`

`
@Gn~a1 ,b1!1Gn~a2 ,b2!2Gn~a1 ,b2!2Gn~a2 ,b1!#

(m52`
`

„exp$23@~2m11!Z22#2/2n%2exp@23~2m11!2Z2/2n#…
, ~A3!

which has been used to generate the curves described in the text. The formula in Eq.~A1! has been generated by multiplyin
appropriate transformsĜj(a) as defined in Eq.~2.23! together according to the expansion provided by the method of ima
and finally inverting the result. A similar method has been used to generate the functionsHn that appear in Eqs.~3.7! and~3.8!.
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